Green hydrogen: MXenes shows talent as catalyst for oxygen evolution

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules.

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules. © B. Schmiedecke/HZB

The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.

Green hydrogen is seen as one of the energy storage solutions of the future. The gas can be produced in a climate-neutral way using electricity from the sun or wind by electrolytic water splitting. While hydrogen molecules are produced at one electrode, oxygen molecules are formed at the other. This oxygen evolution reaction (OER) is one of the limiting factors in electrolysis. Special catalysts are needed to facilitate this reaction. Among the best candidates for OER catalysts are, for example, nickel oxides, which are inexpensive and widely available. However, they corrode quickly in the alkaline water of an electrolyser and their conductivity also leaves much to be desired. This is currently preventing the development of low-cost, high-performance electrolysers.

MXene as catalysts

A new class of materials could offer an alternative: MXenes, layered materials made of metals, such as titanium or vanadium, combined with carbon and/or nitrogen. These MXenes have a huge internal surface area that can be put to fantastic use, whether for storing charges or as catalysts.

An international team led by Dr Michelle Browne has now investigated the use of MXenes as catalysts for the oxygen evolution reaction. PhD student Bastian Schmiedecke chemically 'functionalised' the MXenes by docking copper and cobalt hydroxides onto their surfaces. In preliminary tests, the catalysts produced in this way proved to be significantly more efficient than the pure metal oxide compounds. What's more, the catalysts showed no degradation and even improved efficiency in continuous operation.

Measurements at BESSY II

Measurements at the BESSY II X-ray source, with Namrata Sharma and Tristan Petit, showed why this works so well: “We were able to use the Maxymus beamline there to find out how the outer surfaces of the MXene samples differ from the inside,” explains Schmiedecke. The researchers combined scanning electron microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray transmission microscopy (STXM) and X-ray absorption near-edge structure (XANES) to gain further insights into the material.

Outlook: observation under continuous load

"We have been able to show that MXenes have great potential for use as catalysts in electrolysers," says Michelle Browne. The collaboration with partner teams from Trinity College, Dublin, Ireland, and the University of Chemistry and Technology, Prague will continue. In addition to further chemical variations of MXene catalysts, the team also plans to test such catalysts in conventional electrolysers in continuous operation.

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.