Mesoporous silicon: Semiconductor with new talents

In mesoporous silicon, charge transport is dominated by electrons in extended, wave-like states (blue).

In mesoporous silicon, charge transport is dominated by electrons in extended, wave-like states (blue). © M. Künsting / HZB

Silicon is the best-known semiconductor material. However, controlled nanostructuring drastically alters the material's properties. Using a specially developed etching apparatus, a team at HZB has now produced mesoporous silicon layers with countless tiny pores and investigated their electrical and thermal conductivity. For the first time, the researchers elucidated the electronic transport mechanism in this mesoporous silicon. The material has great potential for applications and could also be used to thermally insulate qubits for quantum computers.

Mesoporous silicon is crystalline silicon with disordered nanometer-sized pores. The material has a huge internal surface area and is also biocompatible. This opens up a wide range of potential applications, from biosensors to battery anodes and capacitors. In addition, the material’s exceptionally low thermal conductivity suggests applications as thermal insulator.

Understanding transport properties in silicon nanostructures

Although mesoporous silicon has been known for decades, until now there has been a lack of fundamental understanding of the transport of charge carriers and the possible involvement of lattice vibrations (phonons).However, in order to develop the material in a targeted manner, a precise understanding of the transport properties and processes is required,’ says Priv. Doz. Dr. Klaus Habicht, who heads the Dynamics and Transport in Quantum Materials (QM-ADT) department at HZB.

Habicht and his team have now presented new insights. They synthesised a series of silicon nanostructures using an etching technique optimised at HZB and determined the temperature-dependent electrical conductivity and thermopower.

Electrons in wavelike states dominate the transport

‘By analysing the data, we were able to unambiguously identify the fundamental charge transport process,’ says Dr. Tommy Hofmann, first author of the study. The key finding: ‘It is not the electrons, localised by disorder, that hop from one localised state to the next that dominate charge transport, but those in extended, wave-like states.’ In this case, the conductivity decreases with increasing disorder. The activation energy required to move charge carriers over a disorder-dependent ‘mobility edge’ increases.

In contrast to a hopping process, lattice vibrations do not play a role in charge transport. This was particularly evident from measurements of the Seebeck effect, which probe the electrical voltage across a sample when it is exposed to a temperature difference along a defined direction.

‘This is the first time that we have provided a reliable and novel explanation for the microscopic charge carrier transport in disordered, nanostructured silicon,’ says Dr. Tommy Hofmann.

Manifold applications

These results are highly relevant to practical applications, as mesoporous silicon could be ideal for silicon-based qubits. These qubits operate at cryogenic temperatures, typically below 1 Kelvin, and require very good thermal insulation to prevent heat from the surrounding environment from being absorbed and erasing the information stored in the qubits. ‘To use a metaphor, you could think of mesoporous silicon as a type of insulating foam used in building construction,’ says Habicht.

The use of mesoporous silicon may also be suitable for semiconductor applications that have so far failed due to the high thermal conductivity of crystalline or polycrystalline silicon. ‘The disorder can be used in a targeted way,’ says Habicht. Semiconductors with purely randomly distributed mesopores would be an exciting new class of materials for technical applications ranging from photovoltaics, thermal management and nanoelectronics to qubits for quantum computers.

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).

  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.