HZB and TU Berlin: New joint research group at BESSY II

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB.

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB. © Martin Weinhold

Birgit Kanngießer is setting up a joint research group to combine X-ray methods in laboratories and at large-scale facilities. In particular, the physicist wants to investigate how X-ray experiments on smaller laboratory instruments can be optimally complemented with more complex experiments that are only possible at synchrotron sources such as BESSY II. 

Prof. Dr. Birgit Kanngießer is professor of analytical X-ray Physics at the Technische Universität Berlin, where she also heads a large research group. Together with the Max Born Institute she has build up BLiX (Berlin laboratory for innovative X-ray technologies), which brings established X-ray methods from the synchrotron into the laboratory. At BESSY II she was involved as one of the first users from the early on.

Now HZB and TU Berlin are funding a joint research group headed by Birgit Kanngießer to strengthen this cooperation. This should also accelerate the exchange of knowledge and technology between BESSY II and university laboratories.

The joint research group is called 'Combined X-ray methods at BLiX and BESSY II - SyncLab'. On the TU Berlin side, the Berlin laboratory for innovative X-ray technologies (BLiX) is integrated. Kanngießer will initially focus on evaluating how time-resolved measurements using near-edge X-ray spectroscopy in the soft X-ray range on smaller instruments and at BESSY II could complement each other. Further analytical and imaging X-ray methods are to follow in the future.

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).

  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.