Freigeist Fellowship for Tristan Petit

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship.

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship. © HZB

For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.

Following his doctoral studies, Dr. Tristan Petit joined the HZB team of Prof. Emad Aziz supported by a post-doctoral stipend from the Alexander von Humboldt Foundation. He had already investigated surface modification of nanodiamonds while exploring their potential for biomedical applications during his doctoral research at the Diamond Sensors Laboratory (CEA) in Gif sur Yvette, France. Petit has since expanded his research interests. This is because nanodiamond materials can also exhibit catalytic effects, in particular when irradiated by sunlight. One dream is to develop synthetic nanodiamond materials for manufacturing solar fuels like methane using sunlight and carbon dioxide, thereby storing solar energy chemically. Aziz and Petit are now working on this project under the European DIACAT research programme.

As a Freigeist Fellow, Petit will investigate how nanocarbon materials in aqueous solutions interact with their environment. These interactions have hardly been studied so far, but they are essential for developing new applications and being better able to assess risks.

It is very difficult to study nanocarbon materials in aqueous solutions experimentally, though. Spectrographic methods using X-ray light can provide information about the electrochemical and photochemical processes. Petit relies on specialised setups for this such as LiXEdrom at BESSY II that were developed at HZB specifically for these kinds of experiments. He intends to use infrared spectroscopy to determine the configuration of water molecules surrounding the nanoparticles. Petit also plans to carry out sequential laser-based pump-probe measurements in order to observe ultrafast electronic processes in the nanoparticles. The methods have already proven themselves in nanocarbon solid-state experiments, but their utilisation in studying nanocarbon in liquids is new, however.

“The Freigeist Fellowship makes it possible for me to research these problems comprehensively. Once we better understand the complex interactions between nanocarbon particles in an aqueous environment, we will be able to develop a new generation of carbon-based nanomaterials for different applications – from photocatalysis of solar fuels to medical applications”, says Petit. The Freigeist Fellowship is accompanied by funding of 805,000 EUR, of which 375,000 EUR is provided by HZB in-house resources and 430,000 EUR by the VolkswagenStiftung.

As a result, there are now two Freigeist Fellows on Aziz’ team. Dr. Annika Bande also received a Freigeist Fellowship last year and has since been working at the HZB Institute for Methods of Material Development headed by Aziz.


Further information on the Freigeist Fellowships: www.volkswagenstiftung.de/freigeist-fellowships.

arö

  • Copy link

You might also be interested in

  • Saskia Vormfelde will be the new Administrative Director at HZB
    News
    06.05.2025
    Saskia Vormfelde will be the new Administrative Director at HZB
    The successful science manager moves from Freiburg to Berlin on 1 September 2025.

  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.
  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.